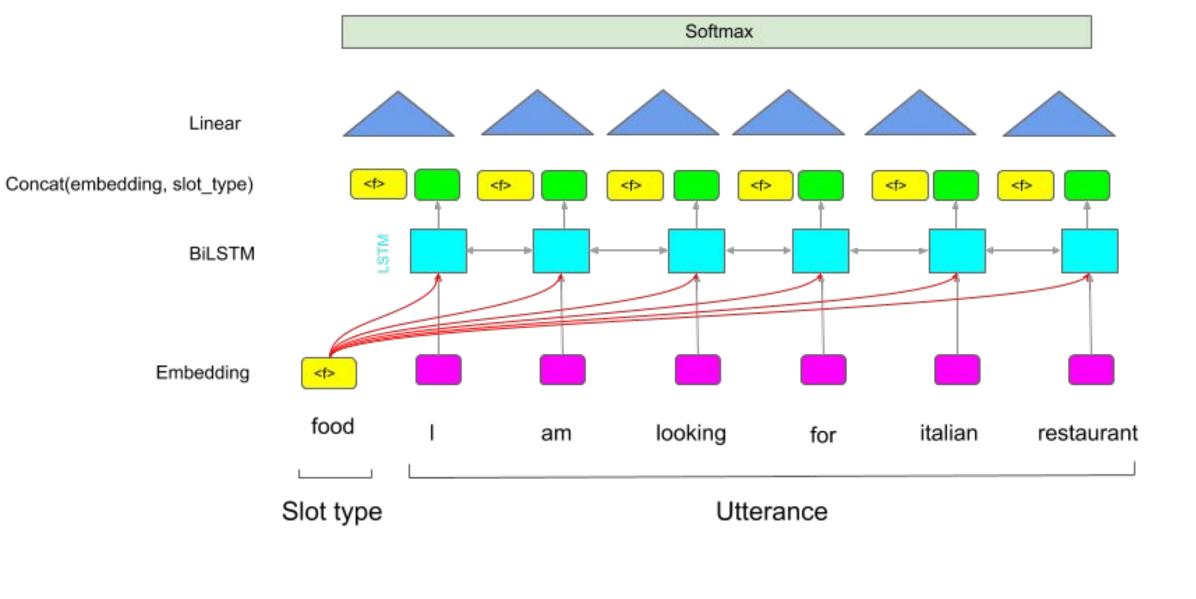


Toward Scalable Neural Dialogue State Tracking Model

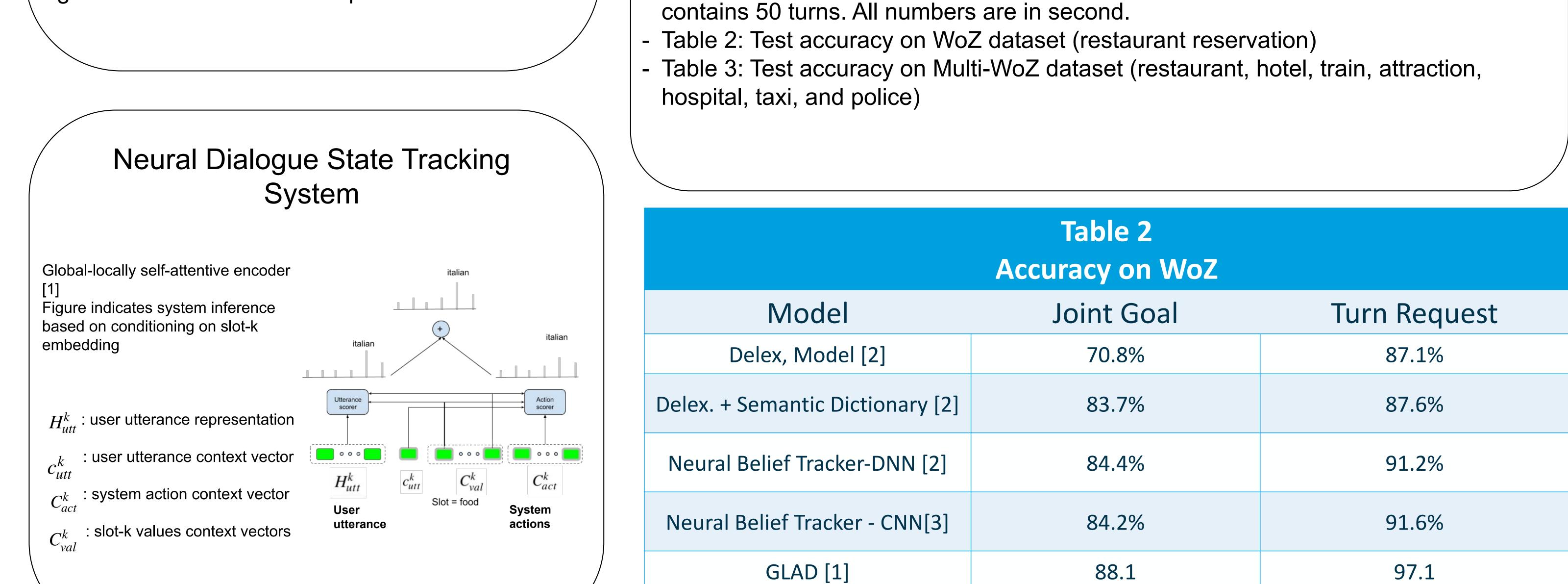
Elnaz Nouri¹, Ehsan Hosseini-Asl² ¹ Microsoft Research and AI, ² Salesforce Research

https://github.com/elnaaz/GCE-Model


Overview

Dialog State Tracking (DST) is an important component of task-oriented dialogue systems which keeps track of the goal of the interaction and what has happened in the dialog.

Proposed Globally-Conditioned Encoder (GCE) Model Context vector C_{utt}^{k} - GCE employs the similar approach of learning Attention Distributio slot-specific temporal and


- The latency in the current neural-based dialogue state tracking models prohibits them from being effectively deployed in production systems, albeit their highly accurate performance.
- Recently proposed Global-Local Self-Attention encoder (GLAD) [1] achieves state of arts results on WoZ and DSTC2 datasets.
- GLAD model used dedicated RNN models for each slot type inside three encoders, for user utterance, system action and slots.
- This paper proposes a new scalable and accurate neural dialogue state tracking model, by proposing a Globally Conditioned Encoder (GCE)
- The latency is improved during training and inference by **35%** on average, while preserving accuracy in predicting belief state, 88.51% on joint goal and **97.38%** on turn request on WoZ dataset.

- context representation of utterance and previous system actions
- Reducing the number of recurrent networks from (1 + #slots) to 1 in utterance, system actions and slot encoders

Evaluation

- The evaluation metric is based on joint goal and turn-level request and joint goal tracking accuracy. The joint goal is the accumulation of turn goals as described [1] - Table 1: Time complexity for each batch of turn, and train and test epoch. Each batch

					GCE (O	urs)			88.5	97.38%	
Table 1: Time Complexity						Table 3: Accuracy on Multi-WoZ				References [1] Zhong, Victor, Caiming Xiong and Richard Socher. "Global-Locally Self-Attentive Dialogue	
	Tra	ain	Т	est		Train	Te	est	State Tracker."		
Model	Turn	Total	Turn	Total	Model	split	Turn inform	Joint goal	[2] Nikola Mrksic, Diarmuid Ó Séaghdha, Tsung-Hsien Wen, Blaise Thomson, and Steve J. Young. 2017. Neural belief tracker: Data-driven dialogue state tracking. In ACL	en, Blaise Thomson, and Steve J.	
						Dev	66.91	34.83			
GLAD [1]	1.78	89	2.32	76	GLAD [1]	Test	66.89	35.57		i Wen, Lina Maria Rojas Barahona, ikola Mrksic, Pei hao Su, Stefan	
	1.16	60	1.92			Dev	67.78	37.42		Young, and David Vandyke. 2017. A end-to-end trainable task oriented	
GCE (Ours)				63	GCE (Ours)	Test	67.88	35.58	dialogue system. In EACL		