
Toward Scalable Neural Dialogue 
State Tracking Model

- Dialog State Tracking (DST) is an important 
component of task-oriented dialogue systems 
which keeps track of the goal of the interaction 
and what has happened in the dialog.

- The latency in the current neural-based dialogue 
state tracking models prohibits them from being 
effectively deployed in production systems, albeit 
their highly accurate performance.
 

- Recently proposed Global-Local Self-Attention 
encoder (GLAD) [1] achieves state of arts results 
on WoZ and DSTC2 datasets.

- GLAD model used dedicated RNN models for 
each slot type inside three encoders, for user 
utterance, system action and slots.

-  This paper proposes a new scalable and 
accurate neural dialogue state tracking model, by 
proposing a Globally Conditioned Encoder (GCE)

- The latency is improved during training and 
inference by 35% on average, while preserving 
accuracy in predicting belief state, 88.51% on joint 
goal and 97.38% on turn request on WoZ dataset.
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Table 2
Accuracy on WoZ

Model Joint Goal Turn Request
Delex, Model [2] 70.8% 87.1%

Delex. + Semantic Dictionary [2] 83.7% 87.6%

Neural Belief Tracker-DNN [2] 84.4% 91.2%

Neural Belief Tracker - CNN[3] 84.2% 91.6%

GLAD [1] 88.1 97.1

GCE (Ours) 88.5 97.38%

Table 1: Time Complexity

Train Test

Model Turn Total Turn Total

GLAD [1] 1.78 89 2.32 76

GCE (Ours) 1.16 60 1.92 63

- The evaluation metric is based on joint goal and turn-level request and joint goal 
tracking accuracy. The joint goal is the accumulation of turn goals as described [1]

- Table 1: Time complexity for each batch of turn, and train and test epoch. Each batch 
contains 50 turns. All numbers are in second.

- Table 2: Test accuracy on WoZ dataset (restaurant reservation) 
- Table 3: Test accuracy on Multi-WoZ dataset (restaurant, hotel, train, attraction, 

hospital, taxi, and police) 
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system actions and slot 
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Table 3: 
Accuracy on Multi-WoZ

Train Test

Model split
Turn 

inform
Joint 
goal

GLAD [1]
Dev 66.91 34.83

Test 66.89 35.57

GCE (Ours)
Dev 67.78 37.42

Test 67.88 35.58

User 
utterance

System 
actions


