A Generative Language Model for Few-shot Aspect-Based Sentiment Analysis

Ehsan Hosseini-Asl, Wenhao Liu, Caiming Xiong Salesforce Al Research

Aspect-Based Sentiment Analysis

- Sentiment analysis is an important task in natural language processing.
- Aspect-based sentiment analysis, which involves extracting aspect term, category, and predicting their corresponding polarities.
- In recent works, pre-trained language models are often used to achieve state-of-the-art results, especially when training data is scarce.
- It is common to fine-tune on the downstream task, usually by adding task-specific layers on top of the model.
- This approach is not efficient in few-shot settings.

Reformulating Task as Language modeling

- We propose recasting aspect-based sentiment analysis as a simple, causal (unidirectional) language modeling task
- This way, the model learns to accomplish the tasks via language generation without the need of training task-specific layers which is essential for few-shot learning

Sentence S^k	[review] review sentence
Aspect term T^k	[term] $term_1 \ polarity_1$, ofterm]
Aspect category C^k	[category] $category_1$ popularity [endofcategory]
Aspect term single and joint task training sequence (LM_{term})	[review] review sentence [ofterm]
Aspect category single and joint task training se- quence $(LM_{category})$	[review] review sentence [endofcategory]
Multi-task training sequence (LM_{multi})	[review] review sentence [ofterm] [category] categor

[endofreview]

, $term_2$ polarity₂, ... $term_I$ polarity_I [end-

 $plarity_1, category_2 \ polarity_2, \ldots \ category_J$

[endofreview] [term] $term_1 \ polarity_1, \ldots$ [end-

[endofreview] [category] $category_1$ $polarity_1$,

[endofreview] [term] $term_1$ $polarity_1, \ldots$ [end $pry_1 \ polarity_1, \dots [endofcategory]$

Training Language Model

Model is trained via standard language modeling loss (cross entropy) for all output tokens

$$p_{\theta}(x) = \prod_{t=0}^{n} p_{\theta}(x_t | x_{< t})$$
 $\mathcal{L}_D = -\sum_{k=1}^{K} \sum_{t=1}^{n} \log p_{\theta}(x_t^k | x_{< t}^k)$

Inference (single-task polarity prediction)

Single-task polarity prediction: predicting the polarity of aspect terms or aspect categories

Inference: the input to the model (LM) comprises of k-th sentence and the corresponding aspect term or category

$$pt_i^k = LM_{term}(S^k, t_i^k) \qquad pc_j^k = LM_{catego}$$

 LM_{term} : a single-task model that trained on aspect term dataset $LM_{category}$: a single-task model that trained on to aspect category dataset

 $_{ory}(S^k, c_j^k)$

Inference (Joint- and Multi-Task)

Joint-task: generating pairs of aspect term and term polarity, or pairs of aspect category and their polarity.

Multi-task: generating all pairs of aspect terms and aspect categories and their polarities.

Inference: the model input relies on the k-th review sentence only, and the model generates pairs in token-by-token (autoregressive) generation,

$$T^{k} = LM_{term}(S^{k}) \qquad C^{k} = LM_{category}(S^{k}) \qquad [T^{k}; C^{k}] = LM_{multi}(S^{K})$$

 LM_{term} : a joint-task model that trained on aspect term dataset

 $LM_{category}$: a joint-task model that trained on to aspect category dataset

 LM_{multi} : a multi-task model that trained on to aspect term and aspect category dataset

Results (Single-Task)

(a)

(d)

Results (Joint- and Multi-Task)

Mathad	Training Task	Model	Restaurant		Laptop	
Method		Model	Joint Accuracy	SB1 (F1)	Joint Accuracy	SB1 (F1)
Discriminative S		MGAN		71.48	-	71.42
	Single (SB1)	BERT	2 <u>00</u> 0	74.1	-	79.28
		BERT-DK	2 — 12	77.02	-	83.55
		BERT-MRC	-	74.21	=	81.06
		BERT-PT		77.97	-	84.26
		BERT-PSUM	-	.	-	85.94
		BERT-HSUM		-	-	86.09
Generative -	Joint (SB1&2)	GPT2 (base)	$56.47_{\pm 0.82}$	$77.59_{\pm 0.32}$	$50.65_{\pm 1.04}$	$72.61_{\pm 1.03}$
		GPT2 (medium)	60.07 ± 0.52	$81.52_{\pm 0.8}$	$53.55 {\pm} 0.43$	75.94 ± 0.17
	Multi (SB1-4)	GPT2 (base)	$49.84_{\pm 1.03}$	$77.92_{\pm 0.53}$	=	3
		GPT2 (medium)	$54.43_{\pm 0.47}$	$82.04_{\pm 0.21}$	-	

SB1: aspect term extraction sub-task

Restaurant domain: joint- and multi-task model still outperforms previous single-task models **Previous Bert-based models:** trained to solve single-task aspect term extraction only, on aspect term extraction

a	es

Ablation (Model parameters up)

Mean-normalized weight update of each layer:

- Bert model has higher variance for all layers, especially for the randomly-initialized classification layer.
- training, where gpt2-generative achieves higher validation performance (ablation on training convergence)

$$\sum_{i=0}^k \frac{(w_i^l - w_{i-1}^l)}{w_0^l}$$

- Mean-normalized update of BERT model is larger that gpt2-generative early during training, but is smaller at the end of

Ablation

- BERT model converges faster than GPT2 in 1% few-shot settings, due to using a small classification head -
- sequence
- model on few and full-shot settings.

Conclusion: GPT2 language model exploits more supervision than BERT in few-shot setting

- GPT2 converges more slowly, perhaps due to using language modeling loss, i.e. cross-entropy loss across all tokens of the input

- when fine-tuning GPT2 model as a classifier on the downstream task using an classification layer, it under-performs BERT

Multi-Task Generation

Sentence	Task	Model Output
the sangria's - watered down.	aspect term	<pre><lterml> sangria negative</lterml></pre>
	aspect category	< category > food neutral
	aspect term & category	<pre></pre> terml> sangria negative lcategoryl> food nega-
		tive
	groundtruth	<pre></pre> terml> sangria negative lcategoryl> food nega-
		tive
everyone who works there (the host, the bartender, the servers) is so helpful.	aspect term	host positive, bartender neutral, servers positive
	aspect category	<pre><lcategoryl> service positive</lcategoryl></pre>
	aspect term & category	<pre></pre> terml> host positive, bartender positive, servers
		manistima dente a multi se manistima
		positive < category > service positive
	groundtruth	<pre></pre>

Thank You!

Code: https://github.com/salesforce/fewshot_absa

Poster ID: 237

Source code

