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Aspect-Based Sentiment Analysis

- Sentiment analysis is an important task in natural language processing.

- Aspect-based sentiment analysis, which involves extracting aspect term, category, and predicting
their corresponding polarities.

- In recent works, pre-trained language models are often used to achieve state-of-the-art results,
especially when training data is scarce.

- It is common to fine-tune on the downstream task, usually by adding task-specific layers on top of
the model.

- This approach is not efficient in few-shot settings.



Reformulating Task as Language modeling

- We propose recasting aspect-based sentiment analysis as a simple, causal (unidirectional) language
modeling task

- This way, the model learns to accomplish the tasks via language generation without the need of training
task-specific layers which is essential for few-shot learning
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Training Language Model

Model is trained via standard language modeling loss (cross entropy) for all output tokens
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Inference (single-task polarity prediction)

Single-task polarity prediction: predicting the polarity of aspect terms or aspect categories

Inference: the input to the model (LM) comprises of k-th sentence and the corresponding aspect term or category

Ptf = LMte’r‘m(Ska tf) pC;? = LMcategory(Ska Cf)

L Mierm : a single-task model that trained on aspect term dataset

LM ategory : asingle-task model that trained on to aspect category dataset



Inference (Joint- and Multi-Task)

Joint-task: generating pairs of aspect term and term polarity, or pairs of aspect category and their polarity.

Multi-task: generating all pairs of aspect terms and aspect categories and their polarities.

Inference: the model input relies on the k-th review sentence only, and the model generates pairs in token-by-token
(autoregressive) generation,

Tk — LMteTm(Sk) Ck = LMcategory(Sk) [Tka Ck] — LMmultz'(SK)

LM;erm :a joint-task model that trained on aspect term dataset

LMcatGQOTy : a joint-task model that trained on to aspect category dataset

LM, .1+; :amulti-task model that trained on to aspect term and aspect category
dataset



Results (Single-Task)
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Results (Joint- and Multi-Task)
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SB1: aspect term extraction sub-task
Restaurant domain: joint- and multi-task model still outperforms previous single-task models
Previous Bert-based models: trained to solve single-task aspect term extraction only, on aspect term extraction



Ablation (Model parameters up)

All layers (1% shot) Self-attention layers (1% shot)
3 10-2 2
3 T 102
'8_ ok
> =
i)

g g
© ©

10~
g g 10—3
e g
C -
5 5
GE) — Bert = — Bert

10-4 gpt2-classifier i gpt2-classifier

- gpt2-generative 107 —— gpt2-generative
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
training steps training steps
- : : (wﬁ — w§—1)
Mean-normalized weight update of each layer: E l
. w
1=0 0

- Bert model has higher variance for all layers, especially for the randomly-initialized classification layer.

- Mean-normalized update of BERT model is larger that gpt2-generative early during training, but is smaller at the end of
training, where gpt2-generative achieves higher validation performance (ablation on training convergence)



Ablation
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- BERT model converges faster than GPT2 in 1% few-shot settings, due to using a small classification head

- GPT2 converges more slowly, perhaps due to using language modeling loss, i.e. cross-entropy loss across all tokens of the input
sequence

- when fine-tuning GPT2 model as a classifier on the downstream task using an classification layer, it under-performs BERT

model on few and full-shot settings.

Conclusion: GPT2 language model exploits more supervision than BERT in few-shot setting



Multi-Task Generation

Sentence

the sangria’s - watered down.

everyone who works there (the host, the bartender, the
servers) 1s so helpful.

Task Model Output
aspect term <Iterml> sangria negative
aspect category <lIcategoryl> food neutral

aspect term & category

<

term|> sangria negative <lcategoryl> food nega-

tive

groundtruth <Iterm|> sangria negative <lcategoryl> food nega-
tive

aspect term host positive, bartender neutral, servers positive

aspect category <lIcategoryl> service positive

aspect term & category

<Iterml> host positive, bartender positive, servers
positive <lcategoryl> service positive

groundtruth

<Iterm|> bartender positive, host positive, servers
positive <lcategoryl> service positive
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Source code

Code:
https://qithub.com/salesforce/fewshot absa
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https://github.com/salesforce/simpletod

