

salesforce AI RESEARCH

Overview

Motivation

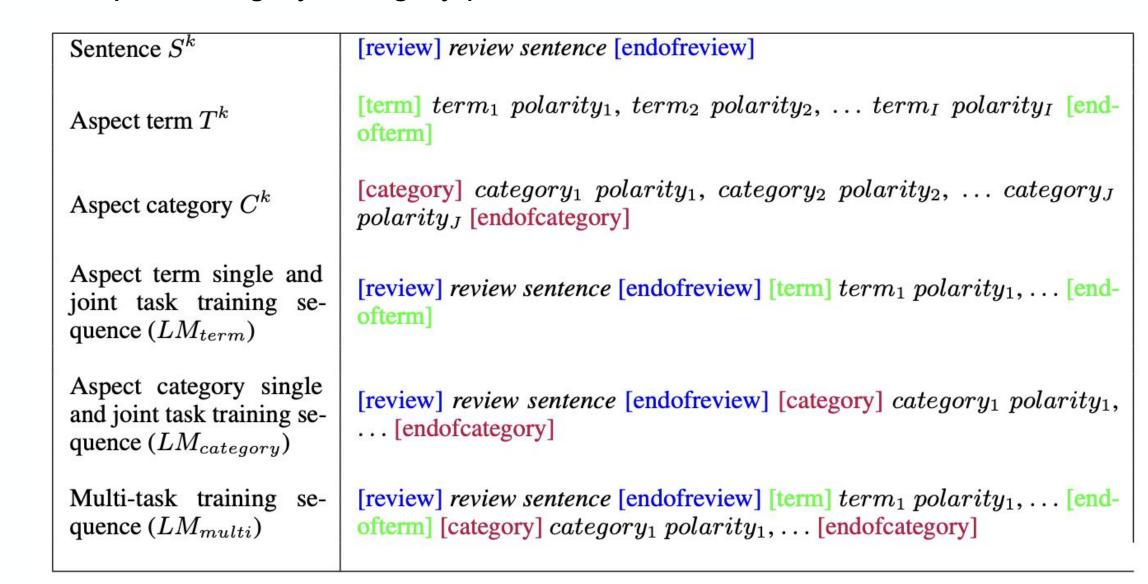
- Sentiment analysis is an important task in natural language processing.
- Aspect-based sentiment analysis, which involves extracting aspect term, category, and predicting their corresponding polarities.
- In recent works, pre-trained language models are often used to achieve state-of-the-art results, especially when training data is scarce.
- We are interested in few-shot settings.

Proposal

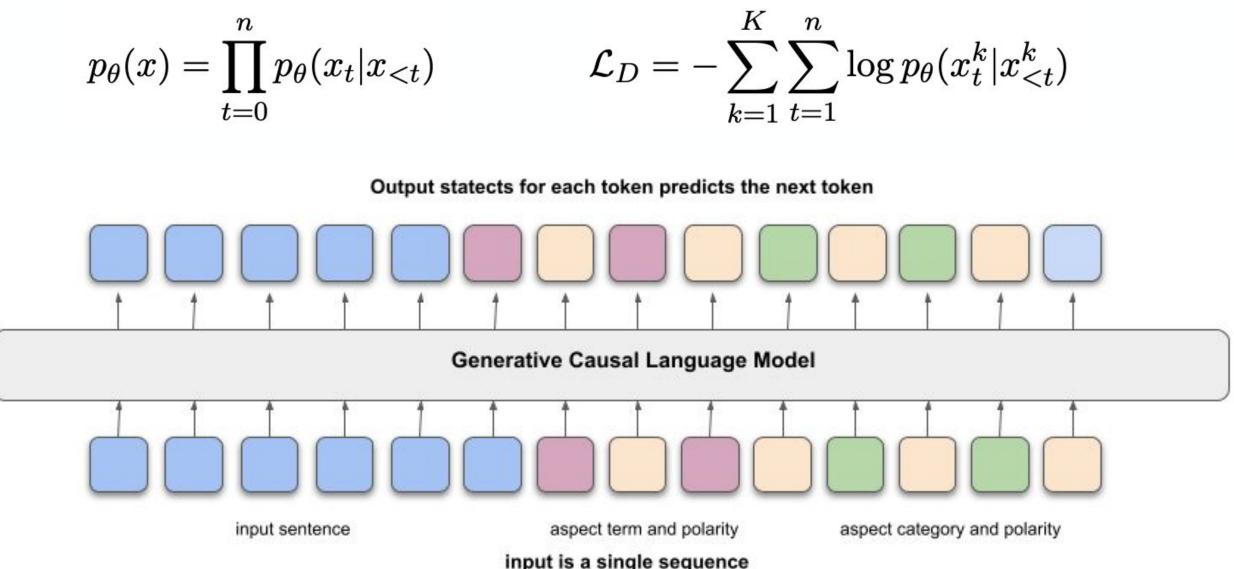
- Recasting aspect-based sentiment analysis as a simple, causal (unidirectional) language modeling task
- The model learns to accomplish the tasks via language generation without the need of training task-specific layers which is essential for few-shot learning

Algorithm

• A single training sequence consists of the concatenation of review sentence, aspect terms, term polarities, aspect category, category polarities.



• Generative model is trained by minimizing the negative log likelihood over the joint sequence



Contact

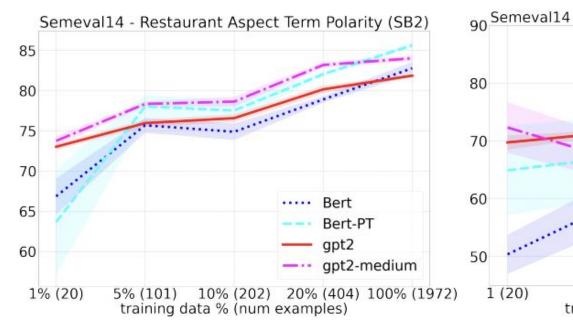
- Ehsan Hosseini-Asl, ehsan.hosseiniasl@gmail.com
- Wenhao Liu, wenhao.liu@salesforce.com
- Caiming Xiong, cxiong@salesforce.com

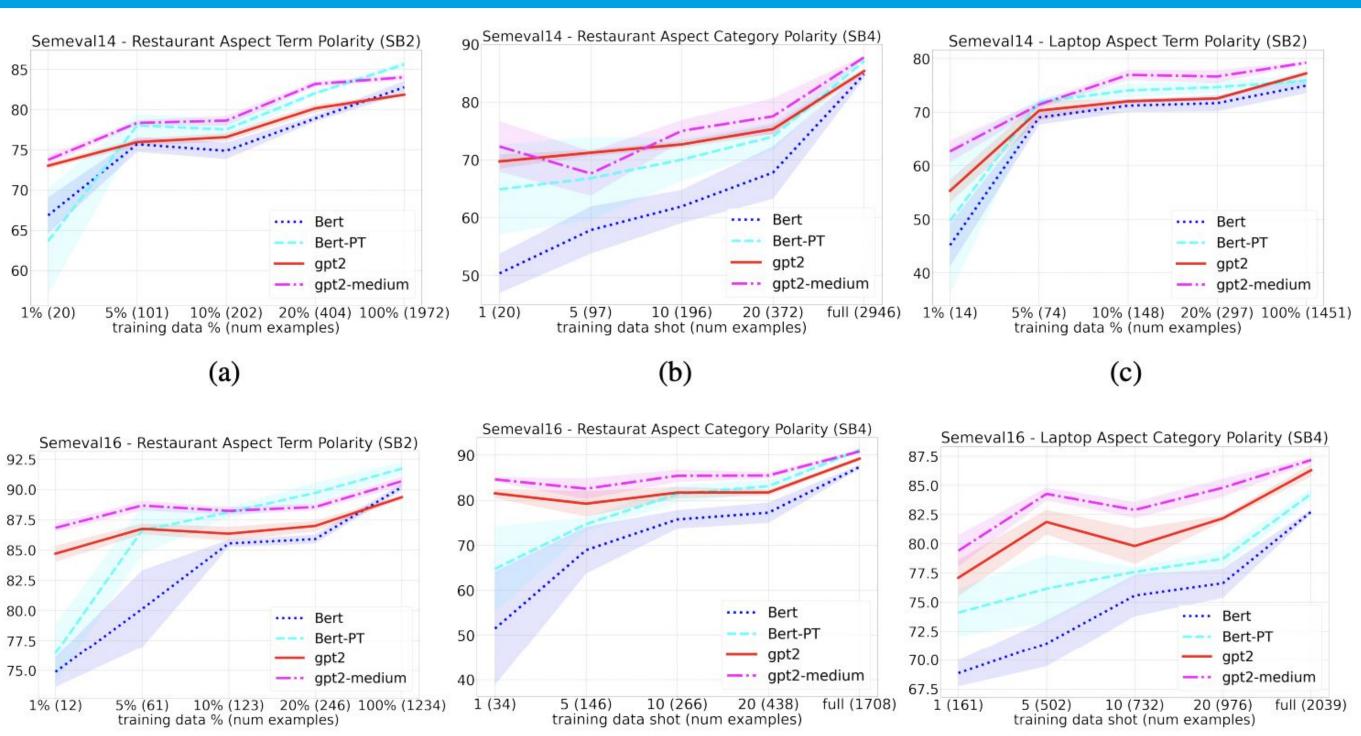
Code: https://github.com/salesforce/fewshot absa

A Generative Language Model for Few-Shot Aspect-Based Sentiment Analysis

Ehsan Hosseini-Asl, Wenhao Liu, Caiming Xiong

Single-task few-shot polarity prediction





Single-task polarity prediction: predicting the polarity of aspect terms or aspect categories

Inference: the input to the model (LM) comprises of k-th sentence and the corresponding aspect term or category

$$pt_i^k = LM_{term}(S^k, t_i^k)$$

: a single-task model that trained on aspect term dataset LM_{term} $LM_{category}$: a single-task model that trained on to aspect category dataset

Joint- and Multi-task prediction

Joint-task: generating pairs of aspect term and term polarity, or pairs of aspect category and their polarity.

Multi-task: generating all pairs of aspect terms and aspect categories and their polarities.

Inference: the model input relies on the k-th review sentence only, and the model generates pairs in token-by-token (autoregressive) generation,

$$C^k = LM_{cate}$$

*LM*_{term} : a joint-task model that trained on aspect term dataset *LM*_{category}: a joint-task model that trained on aspect category dataset : a multi-task model that trained on aspect term and aspect category dataset

Results

 $T^k = LM_{term}(S^k)$

Method	Training Task	Model	Restaurant		Laptop	
Method			Joint Accuracy	SB1 (F1)	Joint Accuracy	SB1 (F1)
Discriminative	Single (SB1)	MGAN	- -	71.48	-	71.42
		BERT	1 <u>1</u> 1	74.1	-	79.28
		BERT-DK	-	77.02	-	83.55
		BERT-MRC	-	74.21	-	81.06
		BERT-PT	-	77.97	-	84.26
		BERT-PSUM	-	-	-	85.94
		BERT-HSUM	-	-	-	86.09
Generative	Joint (SB1&2)	GPT2 (base)	$56.47_{\pm 0.82}$	$77.59_{\pm 0.32}$	$50.65_{\pm 1.04}$	$72.61_{\pm 1.03}$
		GPT2 (medium)	$60.07_{\pm 0.52}$	$81.52_{\pm 0.8}$	$53.55_{\pm 0.43}$	75.94 ± 0.17
	Multi (SB1-4)	GPT2 (base)	$49.84_{\pm 1.03}$	$77.92_{\pm 0.53}$	-	
		GPT2 (medium)	$54.43_{\pm 0.47}$	$82.04_{\pm 0.21}$	-	3

SB1: aspect term extraction sub-task

Restaurant domain: joint- and multi-task model still outperforms previous single-task models **Previous Bert-based models:** trained to solve single-task aspect term extraction only, on aspect term extraction

Selected References:

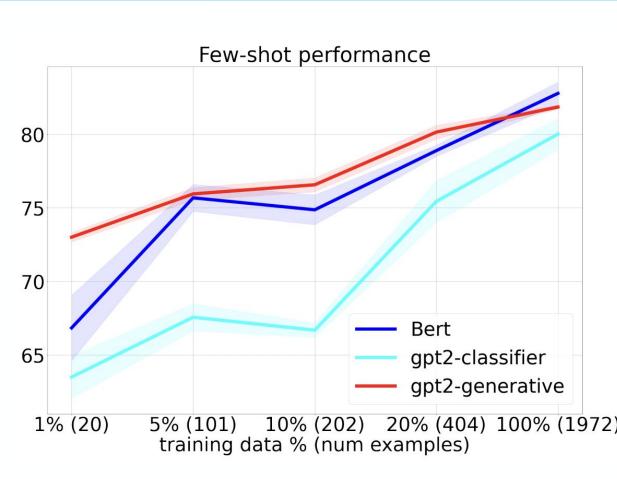
- [3] Liu, Jian, et al., "Solving aspect category sentiment analysis as a text generation task.", EMNLP, 2021.

$$pc_j^k = LM_{category}(S^k, c_j^k)$$

 $_{egory}(S^k)$

 $[T^k; C^k] = LM_{multi}(S^K)$

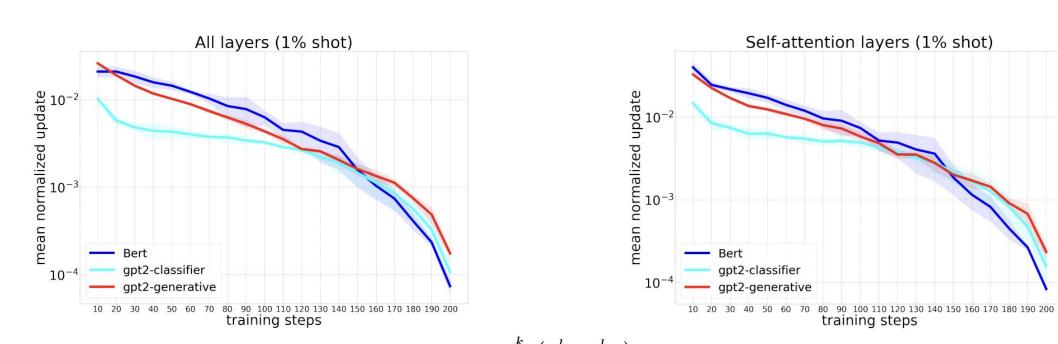
Ablation: Generative vs. Discriminative training of language model



Restaurant aspect-term polarity prediction

when fine-tuning GPT2 model as a classifier on the downstream task using an classification layer, it under-performs BERT model on few and full-shot settings.

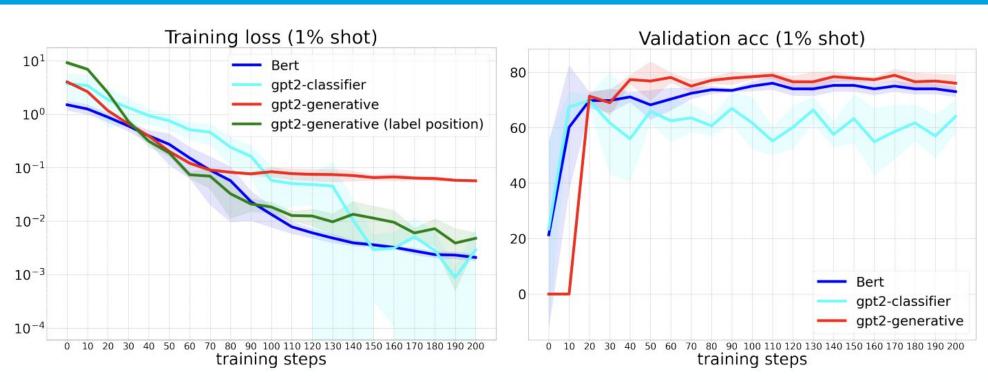
Ablation: Model parameter shift



Mean-normalized weight update of each layer: $\sum_{i=1}^{n} \frac{(w_i^i - w_{i-1}^i)}{w_0^i}$

Bert model has higher variance for all layers, especially for the randomly-initialized classification layer.

Ablation: Training convergence



- BERT model converges faster than GPT2 in 1% few-shot settings, due to using a small classification head - GPT2 converges more slowly, perhaps due to using language modeling loss, i.e. cross-entropy loss across all tokens of the input sequence

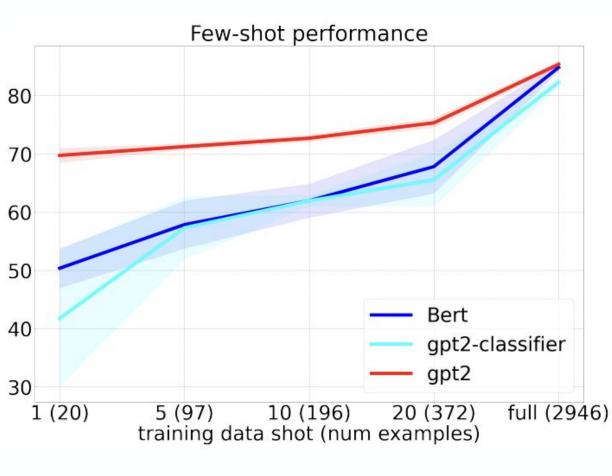
Conclusion: GPT2 language model exploits more supervision than BERT in few-shot setting

Multi-tas	k Gene	ratio

the sangria's - watered down.

everyone who works there (the ho servers) is so helpful.

• [1] Xu, Hu, et al., "Bert post-training for review reading comprehension and aspect-based sentiment analysis.", NAACL-HLT, 2019. • [2] Reddy, Natesh, et al. "Does bert understand sentiment? leveraging comparisons between contextual and non-contextual embeddings to improve aspect-based sentiment models." arXiv:2011.11673., 2020.



Restaurant aspect-category polarity prediction

Mean-normalized update of BERT model is larger that gpt2-generative early during training, but is smaller at the end of training, where gpt2-generative achieves higher validation performance (ablation on training convergence)

	Task	Model Output
	aspect term	< term > sangria negative
	aspect category	< category > food neutral
	aspect term & category	<pre></pre> term> sangria negative /category> food nega-
		tive
	groundtruth	<pre></pre> terml> sangria negative lcategoryl> food nega-
		tive
nost, the bartender, the	aspect term	host positive, bartender neutral, servers positive
	aspect category	lcategoryl> service positive
	aspect term & category	<pre></pre> terml> host positive, bartender positive, servers
		positive < category > service positive
	groundtruth	<pre></pre> term> bartender positive, host positive, servers
		positive < category > service positive

