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A Generative Language Model for Few-Shot Aspect-Based
Sentiment Analysis

Overview

Motivation

e Sentiment analysis is an important task in natural language processing.

e Aspect-based sentiment analysis, which involves extracting aspect term, category, and
predicting their corresponding polarities.

e In recent works, pre-trained language models are often used to achieve state-of-the-art
results, especially when training data is scarce.

e \We are interested in few-shot settings.

Proposal

e Recasting aspect-based sentiment analysis as a simple, causal (unidirectional) language
modeling task

e The model learns to accomplish the tasks via language generation without the need of
training task-specific layers which is essential for few-shot learning

Algorithm

e A single training sequence consists of the concatenation of review sentence, aspect terms, term

polarities, aspect category, category polarities.

Sentence S” [review]| review sentence [endofreview]

termi polarityi, terma polaritysz, ... termr polarityr

Aspect term T*

[category]| category; polarity:, categorys polaritys, ...
polarity ; [endofcategory]

t
Aspect category C* SRR

Aspect term single and
joint task training se-
quence (LMierm)

[review] review sentence [endofreview] term polarity, ...

Aspect category single
and joint task training se-
quence (LMcategory)

[review] review sentence [endofreview] [category] category: polarity:,
. . . [endofcategory]

termq polarity, ...
. [endofcategory]

[review] review sentence [endofreview]
[category] category; polarity;, ..

Multi-task training se-
quence (LM ,v144)

e Generative model is trained by minimizing the negative log likelihood over the joint sequence
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aspect category and polarity

input sentence aspect term and polarity

input is a single sequence
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Single-task few-shot polarity prediction
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Single-task polarity prediction: predicting the polarity of aspect terms or aspect categories

Inference: the input to the model (LM) comprises of k-th sentence and the corresponding aspect term
or category

ptic == LMterm(Ska tf) pc? — LMcategory(Skv C;c)

LM,.,, -asingle-task model that trained on aspect term dataset
LM qteq0r, - @ Single-task model that trained on to aspect category dataset

Joint- and Multi-task prediction

Joint-task: generating pairs of aspect term and term polarity, or pairs of aspect category and their
polarity.

Multi-task: generating all pairs of aspect terms and aspect categories and their polarities.

Inference: the model input relies on the k-th review sentence only, and the model generates pairs in
token-by-token (autoregressive) generation,

Tk = LMte,«m(Sk) Ck — LMcatego'r'y (Sk) [Tka Ck] — LMmUlti(SK)

LMierm  : a joint-task model that trained on aspect term dataset
LM qtegory : @ joint-task model that trained on aspect category dataset

LM,...; .a multi-task model that trained on aspect term and aspect category dataset
Results
Method Training Task ~ Model SEstE -Aptop
Joint Accuracy SB1 (F1) Joint Accuracy SB1 (F1)
MGAN - 71.48 - 71.42
BERT z 74.1 : 79.28
BERT-DK , 77.02 . 83.55
Discriminative  Single (SB1) BERT-MRC - 74.21 - 81.06
BERT-PT . 77.97 . 84.26
BERT-PSUM . * - 85.94
BERT-HSUM - . - 86.09
Toiut (SB1&2) GPT2 (base) 56-47:t0.82 77.59:t0.32 50.65:&1,04 72-61:b1.03
G : GPT2 (medium) 60.07+0.52 81.52410.8 953.55+0.43 75.9410.17
enerative
Multi (SB1-4) GPT2 (base? 49.84:t1_03 77.92i0_53 = -
GPT2 (medium) 54.4310.47 82.044¢.21 : :

SB1: aspect term extraction sub-task
Restaurant domain: joint- and multi-task model still outperforms previous single-task models
Previous Bert-based models: trained to solve single-task aspect term extraction only, on aspect term extraction
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Ablation: Generative vs. Discriminative training of language model
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- when fine-tuning GPT2 model as a classifier on the downstream task using an classification layer, it
under-performs BERT model on few and full-shot settings.

Ablation: Model parameter shift
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- Bert model has higher variance for all layers, especially for the randomly-initialized classification layer.

- Mean-normalized update of BERT model is larger that gpt2-generative early during training, but is smaller at the end of
training, where gpt2-generative achieves higher validation performance (ablation on training convergence)

Ablation: Training convergence
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- BERT model converges faster than GPT2 in 1% few-shot settings, due to using a small classification head
- GPT2 converges more slowly, perhaps due to using language modeling loss, i.e. cross-entropy loss across all tokens
of the input sequence

Conclusion: GPT2 language model exploits more supervision than BERT in few-shot setting

Multi-task Generation

Sentence Task Model Output
the sangria’s - watered down. aspect term <lterm|> sangria negative
aspect category <Icategoryl> food neutral

<lterm|> sangria negative <Icategoryl> food nega-
tive

aspect term & category

groundtruth <lterm|> sangria negative <|categoryl> food nega-
tive
everyone who works there (the host, the bartender, the aspect term host positive, bartender neutral, servers positive
servers) is so helpful.
aspect category <Icategoryl> service positive

aspect term & category | <lterml> host positive, bartender positive, servers
positive <lcategoryl> service positive
<lIterml> bartender positive, host positive, servers

positive <lcategoryl> service positive

groundtruth
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