

salesforce RESEARCH

Overview

Motivation

- Training a model to perform a task typically requires a large amount of data from the domains in which the task will be applied
- Recent domain adaptation techniques, especially based on cyclic adversarial learning, deal with the challenge of adapting a model trained from a data-rich source domain to perform well in a high-resource unlabeled target domain.
- The conventional approach of enforcing cycle-consistency via reconstruction (CycleGAN [1]) is overly restrictive in cases where one or more domains have limited training data.

Proposal

- An augmented cyclic adversarial learning model (ACAL) that enforces the cycle-consistency constraint via an external task-specific model for **low-resource** domain adaptation • It encourages the preservation of task-relevant content as opposed to exact reconstruction

Algorithm

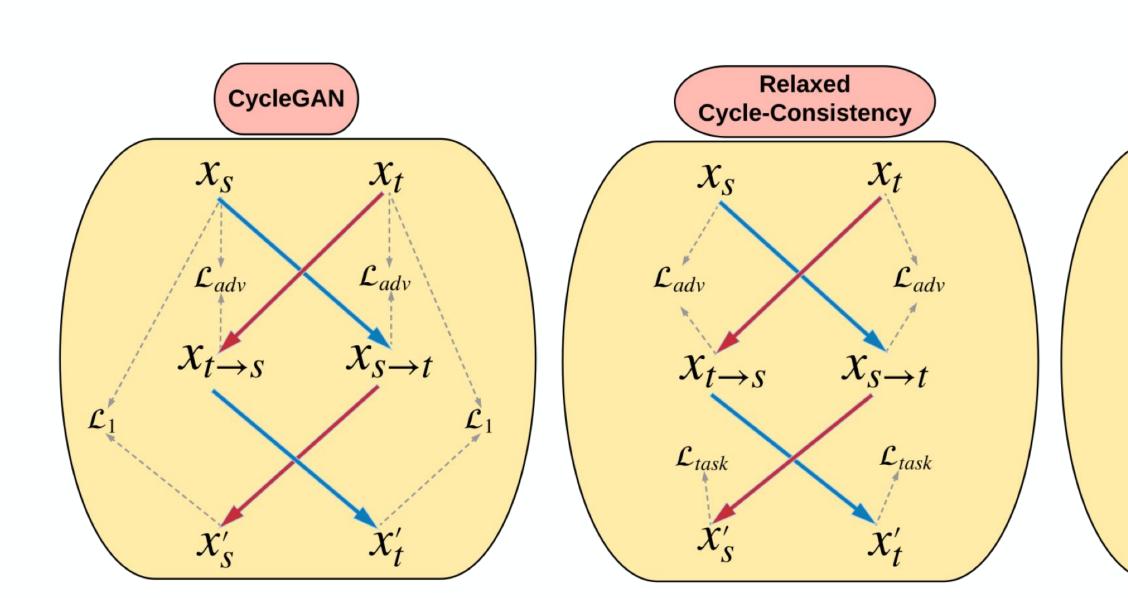
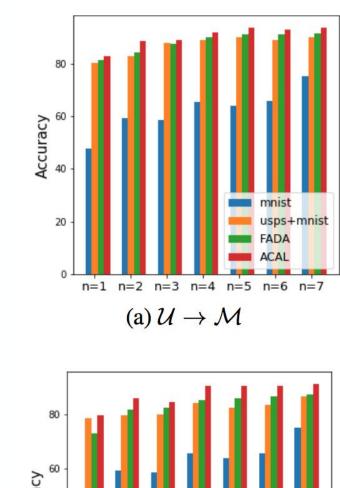
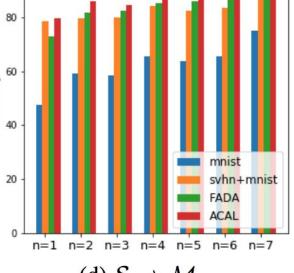


Illustration of proposed approach. In the diagrams X and L denote data and losses, respectively. The ultimate goal of our approach is to use the mapped Source \rightarrow Target samples $(X_{S \rightarrow T})$ to augment the limited data of the target domain (X_T) .

Algorithm 1 Augmented Cyclic Adversarial Learning (ACAL)
Input: source domain data $P_S(x, y)$, target domain data $P_T(x, y)$, pretrained source task model M_S
Output: target task model M_T
while not converged do
Sample from (x_s, y_s) from P_S
if y_t in P_T then
%Supervised%
Sample (x_t, y_t) from P_T
Finetune source model M_S on (x_s, y_s) and $(G_{T \mapsto S}(x_t), y_t)$ samples (eq. 6)
Train task model M_T on (x_t, y_t) and $(G_{S \mapsto T}(x_s), y_s)$ samples (eq. 7)
else
%Un-supervised%
Sample x_t from P_T
Finetune source model M_S on (x_s, y_s) samples (eq. 8)
Train task model M_T ($G_{S \mapsto T}(x_s), y_s$) and ($x_t, M_S(G_{T \mapsto S}(x_t))$) samples (eq. 9)
$\prod_{i=1}^{n} \max_{i=1}^{n} \max_{i$
end
end

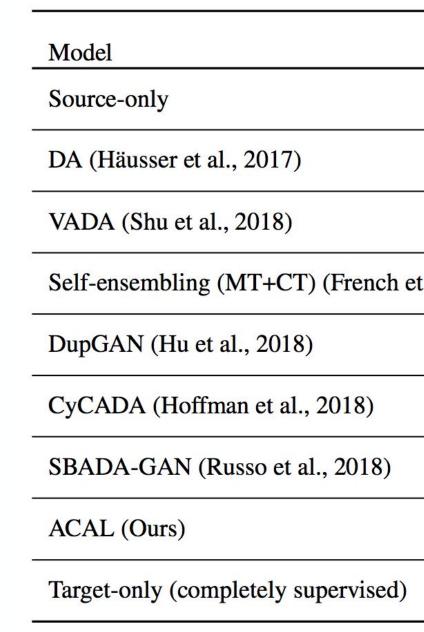

Contact


- Ehsan Hosseini-Asl, ehosseiniasl@salesforce.com
- Yingbo Zhou, yingbo.zhou@salesforce.com
- Caiming Xiong, cxiong@salesforce.com • Richard Socher, rsocher@salesforce.com
- Check out more of our work at https://einstein.ai

Augmented Cyclic Adversarial Learning For Low Resource Domain Adaptation

Ehsan Hosseini-Asl, Yingbo Zhou, Caiming Xiong, Richard Socher

Visual Domain Adaptation (Supervised-Low Resource)



(d) $\mathcal{S} \to \mathcal{M}$

sample is used.

Visual Domain Adaptation (Unsupervised-High Resource)

Speech Domain Adaptation

		Female	e (PER)
Training Set	Domain Adaptation Model	Val	Test
\mathcal{M}	_	35.70	30.69
\mathcal{F} (Baseline model)	-	24.51	23.22
	CycleGAN (Zhu et al., 2017)	32.95	30.07
$\mathcal{M} ightarrow \mathcal{F}$	FHVAE (Hsu et al., 2017)		26.2
	MD-CycleGAN (Hosseini-Asl et al., 2018)	28.80	25.45
	ACAL (Ours)	24.86	23.46
	CycleGAN (Zhu et al., 2017)	28.32	28.43
$\mathcal{F} + (\mathcal{M} ightarrow \mathcal{F})$	MD-CycleGAN (Hosseini-Asl et al., 2018)	21.15	19.08
	ACAL (Ours)	20.32	19.02
$\mathcal{F} + \mathcal{M}$	-	20.63	20.52
	CycleGAN (Zhu et al., 2017)	21.03	22.81
$\mathcal{F} + \mathcal{M} + (\mathcal{M} \to \mathcal{F})$	MD-CycleGAN (Hosseini-Asl et al., 2018)	20.26	19.60
	ACAL (Ours)	20.02	18.44

Speech domain adaptation results on TIMIT. We treat Male (M) and Female (F) voices for the source and target domains, respectively, based on the intrinsic imbalance of speaker genders in the dataset (about 7 : 3 male/female ratio). For the evaluation metric, lower is better.

Selected References:

Augmented

Cycle-Consistency

NS

 $\lambda t \rightarrow s$

NG

 L_{adv}

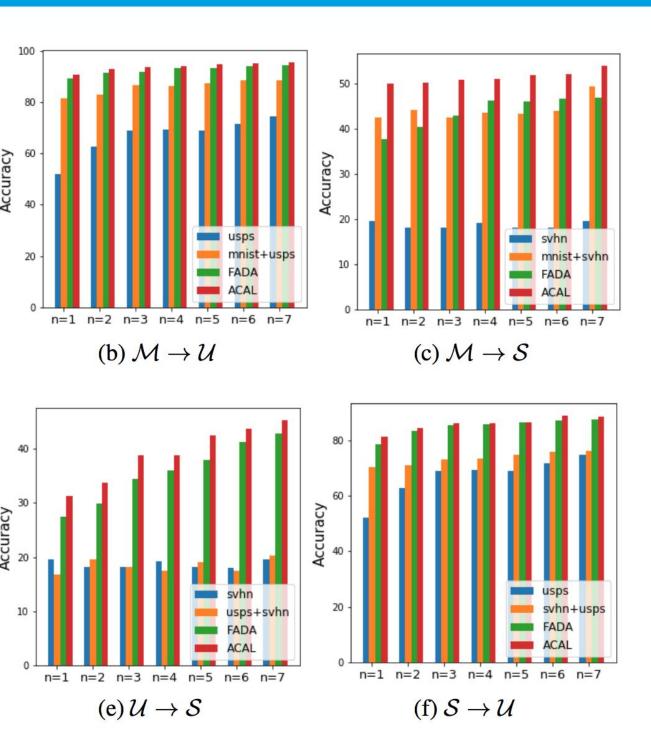
Ltask

 X_t

 $\lambda_{S \to t}$

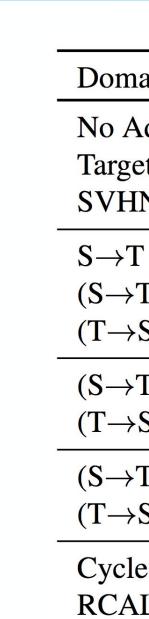
 \mathcal{N}_{f}

Ltask

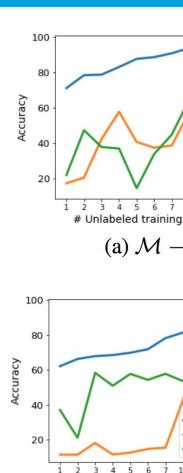

 $G_{S \rightarrow T}$

 $G_{T \to S}$

https://openreview.net/forum?id=B1G9doA9F7


Paper:

FADA model refers to Motiian et al. [2]. n = 1 means 1 labeled example per class. No unlabeled target


		Domain pairs				
	Direction	$\mathcal{M} - \mathcal{U}$	$\mathcal{M}-\mathcal{M}\mathcal{M}$	$\mathcal{M} - \mathcal{S}$	$\mathcal{S} - \mathcal{SD}$	
	\rightarrow	83.46	59.55	38.03	90.32	
	\leftarrow	71.14	98.36	71.11	88.17	
	\rightarrow	-	89.53	-	-	
	\leftarrow	-	2 — 1	97.6	91.86	
	\rightarrow	-	95.7	73.3	-	
	\leftarrow	-	-	94.5	94.9	
t al 2010)	\rightarrow	88.14	-	33.87	-	
t al., 2018)	\leftarrow	92.35	-	93.33	96.01	
	\rightarrow	96.01	-	62.65	-	
	\leftarrow	98.75	-	92.46	-	
	\rightarrow	95.6	57.21	14.56	81.19	
	\leftarrow	96.5	94.57	90.4	72.94	
	\rightarrow	97.6	99.4	61.1	-	
	\leftarrow	95.0	-	76.1	-	
	\rightarrow	98.31	97.29	60.85	96.43	
	\leftarrow	97.16	99.26	96.51	97.98	
	\rightarrow	96.26	98.19	93.38	98.60	
	~	99.49	99.49	99.49	93.38	

MNIST (M), MNIST-M (MM), USPS (U) and SVHN (S), Synthetic Digits (SD)

ACA This observation suggests that it would be beneficial to have cycles in both directions when applying the cycle-consistency constraint, since then both mappings can be learned via real examples

Ablation Study (Robustness)

Comparison of adaptation robustness between CyCADA (Hoffman et al., 2018), CyCADA with no l_1 reconstruction loss (Relaxed), and ACAL algorithms for variable number of unsupervised target samples. Note: No labeled sample is used

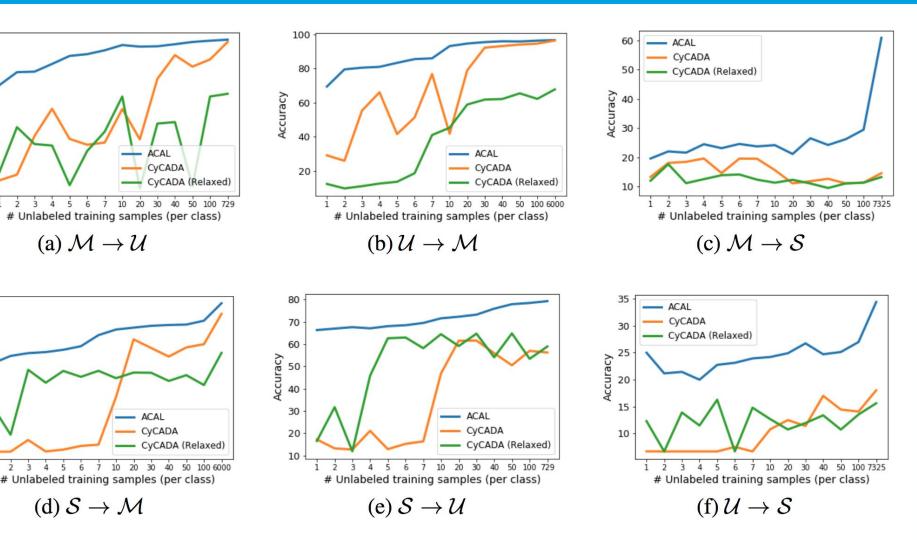
Visual Domain Adaptation (Semi and Unsupervised – Low Resource)

	<u>s</u> –	$\rightarrow \mathcal{M}$	M-	$\rightarrow \mathcal{U}$	\mathcal{U} –	$\rightarrow \mathcal{M}$	<i>S</i> –	$\rightarrow \mathcal{U}$
# target samples per class	0%	10%	0%	10%	0%	10%	0%	10%
n = 10	81.43	77.63	93.86	94.01	93.22	94.89	71.54	75.98
n = 50	84.26	87.22	95.61	94.17	95.93	96.83	77.87	86.19
n = 100	86.49	91.75	96.31	96.01	96.43	96.92	78.42	89.03
n = full train	96.51	99.41	96.91	95.71	96.74	98.45	79.23	93.17

Low-resource semi and unsupervised domain adaptation on MNIST (M), USPS (U) and SVHN (S) datasets. Note: n = 10 means 10 samples per class, and 10% denotes the percentage of target samples (per class) which have labels. 0% corresponds to low-resource unsupervised adaptation.

ASR Prediction

True	sil d
No adaptation	sil d
CycleGAN	sil d
ACAL	sil d
True	sil iy
No Adaptation	sil iy
CycleGAN	sil iy
ACAL	sil iy


ASR prediction improvement on low resource Female domain (TIMIT), when augmented with Male -> Female audios using domain adaptation

• [1] J.Y. Zhu, T. Park, P. Isola and A. A. Efros, Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. ICCV 2017. • [2] S. Motiian, Q. Jones, S. Iranmanesh, and G. Doretto. Few-shot adversarial domain adaptation. In Advances in Neural Information Processing Systems, 2017. • [3] E. Hosseini-Asl, Y. Zhou, C. Xiong, and R. Socher. A multi-discriminator cyclegan for unsupervised non-parallel speech domain adaptation. In INTERSPEECH, 2018. • [4] W.-N. Hsu, Y. Zhang, and J. R. Glass, Unsupervised learning of disentangled and interpretable representations from sequential data, in NIPS, 2017.

Ablation Study (One cycle vs. Two cycles)

SVHN (Source) -> MNIST-10 (Target)				
ain Adaptation Model	Test Accuracy (%)			
Adaptation (trained on SVHN)	71.11			
et Model (trained on MNIST-(10))	79.22±3.98			
N+MNIST-(10)	85.62±1.15			
T	$69.91{\pm}1.56$			
T \rightarrow S)-One Cycle	$46.32{\pm}2.09$			
S \rightarrow T)-One Cycle	$58.34{\pm}2.49$			
$T \rightarrow S$)-RCAL (Ours)	72.51±1.71			
$S \rightarrow T$)-RCAL (Ours)	43.56±2.92			
$T \rightarrow S$)-ACAL (Ours)	79.40±0.73			
$S \rightarrow T$)-ACAL (Ours)	49.81±0.53			
eGAN	45.54±1.05			
L (Ours)	88.62±1.77			
L (Ours)	93.90±0.33			

l dh ah m aa r n ih ng sil d uw aa n dh ah s sil p ay dx er w eh sil g l ih s eh n sil d ih n dh ah s ah n sil l dh ah m aa r n ih ng sil d uw aa m ih s sil b ay er w ih sil b z l ih s ih n d ih n s ah n sil l dh ih m aa r n ih ng sil d ih ah n dh ih s sil p ay ih w r eh sil dh l dh ih s ih n sil d ih n s ay n sil dh ah m aa r n ih ng sil d uw ah n dh ih s sil b ay dx y er w eh sil b l ih s ih n sil d ih n ih s ah n sil

iy v ih n ah s ih m sil p l v ah sil k ae sil b y ih l eh r iy sil k ah n sil t ey n sil t s ih m sil b l z sil iy dh ih n ah s ih m v l v ow sil k ae sil b y ih l eh r iy sil k eh n sil t ey n s ih m sil b l z sil iy ih m ah s eh m sil p l v dh aa sil k ey sil b y ih r ey ey sil k ih n sil t r ey n sil s ih m sil b ah l z sil iy v ih n ah s ih m sil p l v ow sil k ae sil b y ih l eh r iy sil k ih n sil t ay ey n s ih m sil b l z sil

